3.495 \(\int \sqrt {a+b \sin ^2(e+f x)} \tan ^2(e+f x) \, dx\)

Optimal. Leaf size=171 \[ \frac {\tan (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{f}+\frac {a \sqrt {\cos ^2(e+f x)} \sec (e+f x) \sqrt {\frac {b \sin ^2(e+f x)}{a}+1} F\left (\sin ^{-1}(\sin (e+f x))|-\frac {b}{a}\right )}{f \sqrt {a+b \sin ^2(e+f x)}}-\frac {2 \sqrt {\cos ^2(e+f x)} \sec (e+f x) \sqrt {a+b \sin ^2(e+f x)} E\left (\sin ^{-1}(\sin (e+f x))|-\frac {b}{a}\right )}{f \sqrt {\frac {b \sin ^2(e+f x)}{a}+1}} \]

[Out]

-2*EllipticE(sin(f*x+e),(-b/a)^(1/2))*sec(f*x+e)*(cos(f*x+e)^2)^(1/2)*(a+b*sin(f*x+e)^2)^(1/2)/f/(1+b*sin(f*x+
e)^2/a)^(1/2)+a*EllipticF(sin(f*x+e),(-b/a)^(1/2))*sec(f*x+e)*(cos(f*x+e)^2)^(1/2)*(1+b*sin(f*x+e)^2/a)^(1/2)/
f/(a+b*sin(f*x+e)^2)^(1/2)+(a+b*sin(f*x+e)^2)^(1/2)*tan(f*x+e)/f

________________________________________________________________________________________

Rubi [A]  time = 0.16, antiderivative size = 171, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.280, Rules used = {3196, 467, 524, 426, 424, 421, 419} \[ \frac {\tan (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{f}+\frac {a \sqrt {\cos ^2(e+f x)} \sec (e+f x) \sqrt {\frac {b \sin ^2(e+f x)}{a}+1} F\left (\sin ^{-1}(\sin (e+f x))|-\frac {b}{a}\right )}{f \sqrt {a+b \sin ^2(e+f x)}}-\frac {2 \sqrt {\cos ^2(e+f x)} \sec (e+f x) \sqrt {a+b \sin ^2(e+f x)} E\left (\sin ^{-1}(\sin (e+f x))|-\frac {b}{a}\right )}{f \sqrt {\frac {b \sin ^2(e+f x)}{a}+1}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + b*Sin[e + f*x]^2]*Tan[e + f*x]^2,x]

[Out]

(-2*Sqrt[Cos[e + f*x]^2]*EllipticE[ArcSin[Sin[e + f*x]], -(b/a)]*Sec[e + f*x]*Sqrt[a + b*Sin[e + f*x]^2])/(f*S
qrt[1 + (b*Sin[e + f*x]^2)/a]) + (a*Sqrt[Cos[e + f*x]^2]*EllipticF[ArcSin[Sin[e + f*x]], -(b/a)]*Sec[e + f*x]*
Sqrt[1 + (b*Sin[e + f*x]^2)/a])/(f*Sqrt[a + b*Sin[e + f*x]^2]) + (Sqrt[a + b*Sin[e + f*x]^2]*Tan[e + f*x])/f

Rule 419

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(1*EllipticF[ArcSin[Rt[-(d/c),
2]*x], (b*c)/(a*d)])/(Sqrt[a]*Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &
& GtQ[a, 0] &&  !(NegQ[b/a] && SimplerSqrtQ[-(b/a), -(d/c)])

Rule 421

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Dist[Sqrt[1 + (d*x^2)/c]/Sqrt[c + d*
x^2], Int[1/(Sqrt[a + b*x^2]*Sqrt[1 + (d*x^2)/c]), x], x] /; FreeQ[{a, b, c, d}, x] &&  !GtQ[c, 0]

Rule 424

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]*EllipticE[ArcSin[Rt[-(d/c)
, 2]*x], (b*c)/(a*d)])/(Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[
a, 0]

Rule 426

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Dist[Sqrt[a + b*x^2]/Sqrt[1 + (b*x^2)/a]
, Int[Sqrt[1 + (b*x^2)/a]/Sqrt[c + d*x^2], x], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &&  !GtQ
[a, 0]

Rule 467

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(e^(n -
1)*(e*x)^(m - n + 1)*(a + b*x^n)^(p + 1)*(c + d*x^n)^q)/(b*n*(p + 1)), x] - Dist[e^n/(b*n*(p + 1)), Int[(e*x)^
(m - n)*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q - 1)*Simp[c*(m - n + 1) + d*(m + n*(q - 1) + 1)*x^n, x], x], x] /;
FreeQ[{a, b, c, d, e}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[q, 0] && GtQ[m - n + 1, 0] &
& IntBinomialQ[a, b, c, d, e, m, n, p, q, x]

Rule 524

Int[((e_) + (f_.)*(x_)^(n_))/(Sqrt[(a_) + (b_.)*(x_)^(n_)]*Sqrt[(c_) + (d_.)*(x_)^(n_)]), x_Symbol] :> Dist[f/
b, Int[Sqrt[a + b*x^n]/Sqrt[c + d*x^n], x], x] + Dist[(b*e - a*f)/b, Int[1/(Sqrt[a + b*x^n]*Sqrt[c + d*x^n]),
x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] &&  !(EqQ[n, 2] && ((PosQ[b/a] && PosQ[d/c]) || (NegQ[b/a] && (PosQ[
d/c] || (GtQ[a, 0] && ( !GtQ[c, 0] || SimplerSqrtQ[-(b/a), -(d/c)]))))))

Rule 3196

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_.)*tan[(e_.) + (f_.)*(x_)]^(m_), x_Symbol] :> With[{ff = FreeF
actors[Sin[e + f*x], x]}, Dist[(ff^(m + 1)*Sqrt[Cos[e + f*x]^2])/(f*Cos[e + f*x]), Subst[Int[(x^m*(a + b*ff^2*
x^2)^p)/(1 - ff^2*x^2)^((m + 1)/2), x], x, Sin[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[m/2]
 &&  !IntegerQ[p]

Rubi steps

\begin {align*} \int \sqrt {a+b \sin ^2(e+f x)} \tan ^2(e+f x) \, dx &=\frac {\left (\sqrt {\cos ^2(e+f x)} \sec (e+f x)\right ) \operatorname {Subst}\left (\int \frac {x^2 \sqrt {a+b x^2}}{\left (1-x^2\right )^{3/2}} \, dx,x,\sin (e+f x)\right )}{f}\\ &=\frac {\sqrt {a+b \sin ^2(e+f x)} \tan (e+f x)}{f}-\frac {\left (\sqrt {\cos ^2(e+f x)} \sec (e+f x)\right ) \operatorname {Subst}\left (\int \frac {a+2 b x^2}{\sqrt {1-x^2} \sqrt {a+b x^2}} \, dx,x,\sin (e+f x)\right )}{f}\\ &=\frac {\sqrt {a+b \sin ^2(e+f x)} \tan (e+f x)}{f}-\frac {\left (2 \sqrt {\cos ^2(e+f x)} \sec (e+f x)\right ) \operatorname {Subst}\left (\int \frac {\sqrt {a+b x^2}}{\sqrt {1-x^2}} \, dx,x,\sin (e+f x)\right )}{f}+\frac {\left (a \sqrt {\cos ^2(e+f x)} \sec (e+f x)\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {1-x^2} \sqrt {a+b x^2}} \, dx,x,\sin (e+f x)\right )}{f}\\ &=\frac {\sqrt {a+b \sin ^2(e+f x)} \tan (e+f x)}{f}-\frac {\left (2 \sqrt {\cos ^2(e+f x)} \sec (e+f x) \sqrt {a+b \sin ^2(e+f x)}\right ) \operatorname {Subst}\left (\int \frac {\sqrt {1+\frac {b x^2}{a}}}{\sqrt {1-x^2}} \, dx,x,\sin (e+f x)\right )}{f \sqrt {1+\frac {b \sin ^2(e+f x)}{a}}}+\frac {\left (a \sqrt {\cos ^2(e+f x)} \sec (e+f x) \sqrt {1+\frac {b \sin ^2(e+f x)}{a}}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {1-x^2} \sqrt {1+\frac {b x^2}{a}}} \, dx,x,\sin (e+f x)\right )}{f \sqrt {a+b \sin ^2(e+f x)}}\\ &=-\frac {2 \sqrt {\cos ^2(e+f x)} E\left (\sin ^{-1}(\sin (e+f x))|-\frac {b}{a}\right ) \sec (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{f \sqrt {1+\frac {b \sin ^2(e+f x)}{a}}}+\frac {a \sqrt {\cos ^2(e+f x)} F\left (\sin ^{-1}(\sin (e+f x))|-\frac {b}{a}\right ) \sec (e+f x) \sqrt {1+\frac {b \sin ^2(e+f x)}{a}}}{f \sqrt {a+b \sin ^2(e+f x)}}+\frac {\sqrt {a+b \sin ^2(e+f x)} \tan (e+f x)}{f}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.47, size = 140, normalized size = 0.82 \[ \frac {\tan (e+f x) (2 a-b \cos (2 (e+f x))+b)+\sqrt {2} a \sqrt {\frac {2 a-b \cos (2 (e+f x))+b}{a}} F\left (e+f x\left |-\frac {b}{a}\right .\right )-2 \sqrt {2} a \sqrt {\frac {2 a-b \cos (2 (e+f x))+b}{a}} E\left (e+f x\left |-\frac {b}{a}\right .\right )}{\sqrt {2} f \sqrt {2 a-b \cos (2 (e+f x))+b}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a + b*Sin[e + f*x]^2]*Tan[e + f*x]^2,x]

[Out]

(-2*Sqrt[2]*a*Sqrt[(2*a + b - b*Cos[2*(e + f*x)])/a]*EllipticE[e + f*x, -(b/a)] + Sqrt[2]*a*Sqrt[(2*a + b - b*
Cos[2*(e + f*x)])/a]*EllipticF[e + f*x, -(b/a)] + (2*a + b - b*Cos[2*(e + f*x)])*Tan[e + f*x])/(Sqrt[2]*f*Sqrt
[2*a + b - b*Cos[2*(e + f*x)]])

________________________________________________________________________________________

fricas [F]  time = 0.49, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\sqrt {-b \cos \left (f x + e\right )^{2} + a + b} \tan \left (f x + e\right )^{2}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sin(f*x+e)^2)^(1/2)*tan(f*x+e)^2,x, algorithm="fricas")

[Out]

integral(sqrt(-b*cos(f*x + e)^2 + a + b)*tan(f*x + e)^2, x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \sqrt {b \sin \left (f x + e\right )^{2} + a} \tan \left (f x + e\right )^{2}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sin(f*x+e)^2)^(1/2)*tan(f*x+e)^2,x, algorithm="giac")

[Out]

integrate(sqrt(b*sin(f*x + e)^2 + a)*tan(f*x + e)^2, x)

________________________________________________________________________________________

maple [A]  time = 2.53, size = 294, normalized size = 1.72 \[ \frac {-\sqrt {-b \left (\cos ^{4}\left (f x +e \right )\right )+\left (a +b \right ) \left (\cos ^{2}\left (f x +e \right )\right )}\, b \sin \left (f x +e \right ) \left (\cos ^{2}\left (f x +e \right )\right )+\sqrt {-b \left (\cos ^{4}\left (f x +e \right )\right )+\left (a +b \right ) \left (\cos ^{2}\left (f x +e \right )\right )}\, \left (a +b \right ) \sin \left (f x +e \right )+a \sqrt {\frac {\cos \left (2 f x +2 e \right )}{2}+\frac {1}{2}}\, \sqrt {-\frac {b \left (\cos ^{2}\left (f x +e \right )\right )}{a}+\frac {a +b}{a}}\, \sqrt {-b \left (\cos ^{4}\left (f x +e \right )\right )+\left (a +b \right ) \left (\cos ^{2}\left (f x +e \right )\right )}\, \EllipticF \left (\sin \left (f x +e \right ), \sqrt {-\frac {b}{a}}\right )-2 a \sqrt {\frac {\cos \left (2 f x +2 e \right )}{2}+\frac {1}{2}}\, \sqrt {-\frac {b \left (\cos ^{2}\left (f x +e \right )\right )}{a}+\frac {a +b}{a}}\, \sqrt {-b \left (\cos ^{4}\left (f x +e \right )\right )+\left (a +b \right ) \left (\cos ^{2}\left (f x +e \right )\right )}\, \EllipticE \left (\sin \left (f x +e \right ), \sqrt {-\frac {b}{a}}\right )}{\sqrt {-\left (a +b \left (\sin ^{2}\left (f x +e \right )\right )\right ) \left (\sin \left (f x +e \right )-1\right ) \left (1+\sin \left (f x +e \right )\right )}\, \cos \left (f x +e \right ) \sqrt {a +b \left (\sin ^{2}\left (f x +e \right )\right )}\, f} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*sin(f*x+e)^2)^(1/2)*tan(f*x+e)^2,x)

[Out]

(-(-b*cos(f*x+e)^4+(a+b)*cos(f*x+e)^2)^(1/2)*b*sin(f*x+e)*cos(f*x+e)^2+(-b*cos(f*x+e)^4+(a+b)*cos(f*x+e)^2)^(1
/2)*(a+b)*sin(f*x+e)+a*(cos(f*x+e)^2)^(1/2)*(-b/a*cos(f*x+e)^2+(a+b)/a)^(1/2)*(-b*cos(f*x+e)^4+(a+b)*cos(f*x+e
)^2)^(1/2)*EllipticF(sin(f*x+e),(-1/a*b)^(1/2))-2*a*(cos(f*x+e)^2)^(1/2)*(-b/a*cos(f*x+e)^2+(a+b)/a)^(1/2)*(-b
*cos(f*x+e)^4+(a+b)*cos(f*x+e)^2)^(1/2)*EllipticE(sin(f*x+e),(-1/a*b)^(1/2)))/(-(a+b*sin(f*x+e)^2)*(sin(f*x+e)
-1)*(1+sin(f*x+e)))^(1/2)/cos(f*x+e)/(a+b*sin(f*x+e)^2)^(1/2)/f

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \sqrt {b \sin \left (f x + e\right )^{2} + a} \tan \left (f x + e\right )^{2}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sin(f*x+e)^2)^(1/2)*tan(f*x+e)^2,x, algorithm="maxima")

[Out]

integrate(sqrt(b*sin(f*x + e)^2 + a)*tan(f*x + e)^2, x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int {\mathrm {tan}\left (e+f\,x\right )}^2\,\sqrt {b\,{\sin \left (e+f\,x\right )}^2+a} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(e + f*x)^2*(a + b*sin(e + f*x)^2)^(1/2),x)

[Out]

int(tan(e + f*x)^2*(a + b*sin(e + f*x)^2)^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \sqrt {a + b \sin ^{2}{\left (e + f x \right )}} \tan ^{2}{\left (e + f x \right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sin(f*x+e)**2)**(1/2)*tan(f*x+e)**2,x)

[Out]

Integral(sqrt(a + b*sin(e + f*x)**2)*tan(e + f*x)**2, x)

________________________________________________________________________________________